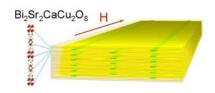
Dynamics of Josephson Vortices in Layered Superconductors


A. Koshelev^a, U. Welp^a, K. Gray^a, T. Tachiki^a, C. Kurter^a, V.Vlasko-Vlasov^a, W.Kwok^a, M. Tachiki^b, K. Kadowaki^b, Yu. Latyshev^c, L. Bulaevskii^d, and L. Ozyuser^e

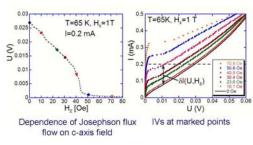
^a Materials Science Division, Argonne National Laboratory, ^b University of Tsukuba, Japan,

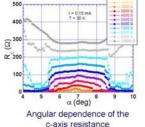
^c IREE, Moscow, Russia, ^d Los Alamos National Laboratory, ^e Izmir Institute of Technology, Turkey

Motivation

- Intrinsic Josephson effect in layered high-T_c superconductors
 - → Josephson vortices for H || ab
- · Low dissipation of Josephson vortices
 - can move at very high velocities
 - → source of powerful electromagnetic wave
- · Potential for high-frequency applications
- · Rich dynamic behavior

Recent Achievements


Controlling dynamics of Josephson-vortex lattice using pancake vortices

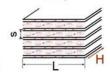

- PV stacks are the most efficient pinners for Josephson vortices (JVs)
- Oscillations of pancake vortices (PVs) due to motion of JVs
 - → large contribution to JV dissipation

Zigzag deformation of PV stack by dense JV lattice

Stack of Josephson junctions prepared from BSCCO whisker using FIB (Yu. Latyshev)

Nonmonotonic excess current δI(U):

- · Probes relaxation frequency of PVs.
- Leads to jumps in IVs and angular dependencies of voltage measured at fixed current.

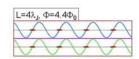

Critical Current oscillations in finite-size stacks

Single small junction, $L < \lambda_j$: Fraunhofer dependence $J_c(\Phi) = J_J \frac{\left| \sin(\pi \Phi/\Phi_0) \right|}{\pi \Phi/\Phi_0}$

Stack of Josephson junctions

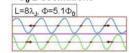
Dense JV lattice:B > $B_{cr} = \Phi_0/2\pi s \lambda_J$

Size-dependent competition:

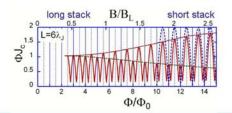


Interaction with boundaries

Shear interaction between planar JV arrays

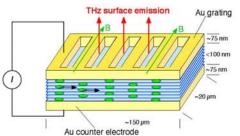

Short stack:

- Φ₀-oscillations
- "almost Fraunhofer"
 rectangular lattice
- (except near Φ =j Φ_0)



Long stack:

- triangular lattice
- alternating surface deformation
- decay length L_B = λ_J B/B_{cr}
- J_c = edge currents
- Φ₀/2-oscillations


<u>Crossover</u> between the stack regimes with increasing magnetic field at $B \sim B_L = B_{cr} L / \lambda_J$

Experiment (flux-flow oscillations): Kakeya *et al.*, cond-mat/0503498

Future directions

Extraction of THz-radiation from BSCCO mesas:

- · 2nd order grating
- matching of wavelength of Josephson plasma wave and free-space radiation
- · emission from large top surface

Open Problems:

- · Steady states and their stability in small-size stacks
 - · regions of rectangular lattice
- · Synchronization by external em wave
- Influence of fluctuating pancake stacks on dynamics of Josephson vortices

